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Summary

Central to all human interaction is the mutual understanding
of emotions, achieved primarily by a set of biologically

rooted social signals evolved for this purpose—facial
expressions of emotion. Although facial expressions are

widely considered to be the universal language of emotion
[1–3], some negative facial expressions consistently elicit

lower recognition levels among Eastern compared to
Western groups (see [4] for a meta-analysis and [5, 6] for

review). Here, focusing on the decoding of facial expression
signals, we merge behavioral and computational analyses

with novel spatiotemporal analyses of eye movements,
showing that Eastern observers use a culture-specific de-

coding strategy that is inadequate to reliably distinguish
universal facial expressions of ‘‘fear’’ and ‘‘disgust.’’ Rather

than distributing their fixations evenly across the face as
Westerners do, Eastern observers persistently fixate the

eye region. Using a model information sampler, we demon-

strate that by persistently fixating the eyes, Eastern
observers sample ambiguous information, thus causing

significant confusion. Our results question the universality
of human facial expressions of emotion, highlighting their

true complexity, with critical consequences for cross-
cultural communication and globalization.

Results

To examine the decoding of facial expressions across
cultures, we recorded the eye movements of 13 Western
Caucasian (WC) and 13 East Asian (EA) observers while they
performed a seven-alternative forced-choice (7AFC) facial
expression categorization task (i.e., ‘‘happy,’’ ‘‘surprise,’’
‘‘fear,’’ ‘‘disgust,’’ ‘‘anger,’’ and ‘‘sadness’’ plus ‘‘neutral’’)
with same-race (SR) and other-race (OR) Facial Action Coding
System (FACS)-coded faces [7, 8]. We chose FACS-coded
faces both for the purpose of presenting well-controlled
stimuli and for their assumed universality in transmitting facial
expression signals, although we fully acknowledge their real-
world limitations. We then related, for each expression, cate-
gorization performance with corresponding eye movement
strategies (see Experimental Procedures).

Task Performance
A three-way (two cultures of observers, two races of face,
seven facial expressions) mixed analysis of variance (ANOVA)
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on mean categorization accuracy (see Table S1 available
online) showed a significant culture of observer 3 facial
expression interaction [F(6,144) = 5.608, p < 0.001]. Post hoc
Bonferroni comparisons showed that EA observers made
significantly more errors when categorizing ‘‘disgust’’ (p <
0.05) and ‘‘fear’’ (p < 0.001) than WC observers did. In contrast,
WC observers categorized all facial expressions with compa-
rably high accuracy. Within-group homogeneity was con-
firmed for both groups: A one-way repeated-measures
ANOVA across individual observers revealed no significant
differences within the WC group. Only two significant differ-
ences were found within the EA group [F(12,156) = 7.33, p <
0.001)], with post hoc Bonferroni comparisons showing both
to be related to one unusually accurate observer (p < 0.001).

Although consistent with previous observations [5, 9, 10,
11], a critical question remains: Why do EA observers system-
atically miscategorize certain facial expressions (i.e., ‘‘fear’’
and ‘‘disgust’’)? Further inspection of EA categorization errors
revealed that ‘‘fear’’ and ‘‘disgust’’ were consistently confused
with ‘‘surprise’’ and ‘‘anger,’’ respectively (see Figure S1 for
categorization confusions).

Eye Movements

Eye movements provide an index of overt attention and can
therefore reveal the information strategically selected to cate-
gorize expressions. Thus, we examined the location, frequency,
and temporal order of fixations in both observer groups.

To the ANOVA design of task performance, we added the
fourth factor of fixations to face regions (i.e., ‘‘left eye,’’ ‘‘right
eye,’’ ‘‘bridge of nose,’’ ‘‘center of face,’’ and ‘‘mouth’’; see
Experimental Procedures). We revealed a significant culture of
observer 3 face region interaction [F(4,96) = 3.65, p < 0.01)].
Post hoc comparisons showed that EA observers made signif-
icantly more ‘‘left eye’’ (p < 0.01) and ‘‘right eye’’ (p < 0.001) fixa-
tions compared to ‘‘mouth.’’ Figure 1A summarizes this interac-
tion, with the corresponding fixation maps collapsed across all
seven expressions (see Figure S2 for the complete analysis,
showing EA bias fixations toward the eyes across all seven
expressions). In contrast, WC observers fixated all face regions
equally. Figure 1B presents the fixation maps for the expres-
sions eliciting significant errors (i.e., ‘‘fear’’ and ‘‘disgust’’) and
the expressions with which they were systematically confused
(i.e., ‘‘surprise’’ and ‘‘anger,’’ respectively).

To further characterize biases in information sampling strat-
egies, we analyzed the order in which the face regions were
visited by using minimum description length (MDL; see Exper-
imental Procedures). MDL is a statistical method that extracts
regular patterns from data set sequences [12, 13]. Here, a
sequence consisted of the succession of fixations on face
regions (e.g., ‘‘left eye’’ / ‘‘right eye’’ / ‘‘left eye’’). To illus-
trate the MDL results, we focused on the same four facial
expression categories as above (i.e., ‘‘surprise,’’ ‘‘fear,’’
‘‘disgust,’’ and ‘‘anger’’; see Figure S3 for MDL applied to all
conditions of the design). In Figure 2, color-coded circles cor-
responding to face regions represent the fixation sequences.
For example, the fixation sequence ‘‘left eye’’ / ‘‘right eye’’ /
‘‘left eye’’ (indicated by the black arrow) is represented by
a succession of circles colored blue, green, and blue.
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Figure 1. Fixation Distributions

(A) Fixation distributions for each observer group collapsed across race of face and seven expression categories (see Figure S2 for fixation distributions for

each condition separately). Color-coded distributions represent the density of fixations across face regions, with red showing the most densely fixated

regions. Note that for East Asian (EA) observers, fixations are biased toward the upper part of the face as compared to Western Caucasian (WC) observers,

where fixations are more evenly distributed across the face, including the mouth.

(B) Fixation distributions for ‘‘surprise,’’ ‘‘fear,’’ ‘‘disgust,’’ and ‘‘anger.’’ Color-coded distributions presented on grayscale sample stimuli show the relative

distributions of fixations across face regions. Color coding is as follows: blue, ‘‘left eye’’; green, ‘‘right eye’’; yellow, ‘‘bridge of nose’’; orange, ‘‘center of

face’’; red, ‘‘mouth.’’ Higher color saturation indicates higher fixation density, shown relative to all conditions. Note that the red ‘‘mouth’’ fixations for EA

observers are less intense as compared to WC observers across conditions. Color-coded bars to the left of each face represent the mean categorization

accuracy for that condition, with red indicating a significant difference in categorization errors between groups (p < 0.05). Error bars indicate standard error

of the mean.
MDL results revealed a clear contrast: EA observers made
significantly more systematic fixation sequences than WC
observers (as shown by a chi-square test of association
[c2(1) = 366.79, p < 0.001]). Note that the high number of
color-coded successions of circles for EA observers in Figure 2
is valid across all experimental conditions (see Figure S3) and
for a majority of individual observers (see Figure S4).

A significant majority of these fixation sequences involved
exclusively ‘‘left eye’’ and ‘‘right eye’’ [c2(1) = 395.38, p < 0.001],
with significantly more use for negative expressions (i.e.,
‘‘fear,’’ ‘‘disgust,’’ and ‘‘anger’’) compared to other expressions
[c2(1) = 15.97, p < 0.001]. Furthermore, EA observers used
similar fixation sequences for the expressions that they consis-
tently confused (i.e., ‘‘surprise’’ and ‘‘fear’’; ‘‘disgust’’ and
‘‘anger’’). Therefore, by persistently biasing fixations toward
the eyes, EA observers could have extracted eye information
that was too similar to discriminate certain expressions.

Model Observer

To objectively determine whether sampling the eyes while ne-
glecting more diagnostic face regions (e.g., the mouth region
for ‘‘fear’’ and ‘‘disgust’’ [e.g., 14]) could elicit behavioral
confusions, we built a model observer that sampled informa-
tion to categorize expressions (see Experimental Procedures).
Figure 3 illustrates the model observer with ‘‘fear’’ and
‘‘surprise,’’ ‘‘anger,’’ and ‘‘disgust’’ as above (see Figure S5
for a complete illustration of the computations).

Consider the facial information sampled by the model
observer in Figure 3A. When sampling the eye region of
‘‘fear,’’ the information is most similar to (i.e., confusable
with) that of ‘‘surprise’’ and less so for other expressions
(see red box). Thus, sampling from the eye region produces
a pattern of confusions (i.e., Pearson correlation values), rep-
resented by the dashed red line in Figure 3B. In contrast,
sampling from the mouth (see green box) produces a different
pattern of confusions (dashed green line in Figure 3B),
whereby ‘‘fear’’ and ‘‘surprise’’ are distinguishable. Our model
randomly sampled information from the face, compared (i.e.,
fitted) each confusion pattern to the behavioral confusion
pattern of EA observers (solid black line in Figure 3B), and
rank ordered each sample according to its fit to EA observers’
behavioral confusions.

Figure 4 illustrates the results with ‘‘surprise,’’ ‘‘fear,’’
‘‘anger,’’ and ‘‘disgust.’’ Color-coded contour plots represent
the rank order of all samples from ‘‘best’’ (red) to ‘‘worst’’ (blue)
R2 values. The model observer most closely replicated EA
observers’ confusions when sampling the eye (delimited with
orange contours) and eyebrow (delimited with red contours)
regions. Note the higher density of EA observer fixations
(based on error trials, shown by the relative distributions in
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Figure 2. Fixation Sequences for ‘‘Surprise,’’ ‘‘Fear,’’ ‘‘Anger,’’ and ‘‘Disgust’’

Successions of color-coded circles represent the fixation sequences extracted via minimum description length analysis, with each circle representing a face

region. Face regions are color-coded as in Figure 1B. For example, the succession of blue / green / blue circles (indicated by the black arrow) corre-

sponds to the fixation sequence ‘‘left eye’’ / ‘‘right eye’’ / ‘‘left eye.’’ Single color-coded circles correspond to fixations that do not appear as part of

a sequence. Black and white bars to the right of the fixation sequences represent how frequently the fixation sequence appeared in the data set, with black

indicating correct trials and white indicating incorrect trials. Different levels of gray in each condition represent the order of the fixation sequences (see

Experimental Procedures). Note the higher number of fixations sequences for EA observers compared to WC observers across expressions (see also

Figure S3).
Figure 4, scale on right) within face regions ranked as ‘‘best fit’’
(see Figure S6 for analysis conducted across all expressions).
This demonstrates that EA behavioral confusions are
symptomatic of a strategy that samples ambiguous informa-
tion (i.e., the eyes and eyebrows) and neglects diagnostic
features (i.e., the mouth).
Figure 3. The Model Observer: Illustration of the Procedure

to Compute Estimated Patterns of Confusion

(A) Information samples. To compute estimated patterns of

confusion, we used the model to sample face information

from the stimulus expression (e.g., ‘‘fear’’) and from the

same location on the other expressions (e.g., ‘‘surprise,’’

‘‘anger,’’ and ‘‘disgust’’). The face images illustrate an

example of the information sampled.

(B) Pattern of confusions. The model then Pearson corre-

lated the stimulus expression sample with each of the other

expression samples. These correlations (plotted in dashed

color-coded lines beneath each corresponding face) repre-

sented the confusions of the model and were fitted (using

ordinary least squares) against the behavioral confusions

of the EA observers (plotted in black). The behavioral confu-

sions of the EA observers were calculated by categorizing

each incorrect trial by response for each expression (e.g.,

for ‘‘fear’’ trials, the numbers of incorrect responses were

computed for ‘‘surprise,’’ ‘‘anger,’’ and ‘‘disgust’’). We

repeated the sampling and correlation process for 10,000

individual samples selected randomly across the face and

finally sorted each information sample according to its fit

to the behavioral confusions of the EA observers (‘‘best’’ to

‘‘worst’’ fits are shown in Figure 4). We followed the same

procedure for each expression (see Figure S5 for a full illus-

tration).
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Figure 4. Model Observer and EA Observer Fixation Maps

Contour plots: color-coded lines represent the rank order of information samples according to fit, with red showing the ‘‘best’’ fit (scale on left). For example,

by sampling the eyebrow (delimited in red) and eye region (delimited in orange) in ‘‘fear,’’ the model produced a pattern of confusions most similar to that of

the EA observers. In contrast, the lower part of the face (delimited in blue and green) produced a pattern of confusions most dissimilar to that of the EA

observers.

Fixation patterns: for each expression, fixations leading to behavioral confusions are shown by relative distributions presented on grayscale sample stimuli.

Red areas indicate higher fixation density for each expression (scale on right). Note the higher density of EA observer fixations within face regions ranked as

‘‘best fit.’’ This demonstrates that the behavioral confusions of the EA observers are symptomatic of an information sampling strategy that selects ambig-

uous information (i.e., the eyes and eyebrows) while neglecting more diagnostic features (i.e., the mouth).
Discussion

Here, we report marked differences between EA and WC
observers in the decoding of universal facial expressions. EA
observers exhibited a significant deficit in categorizing ‘‘fear’’
and ‘‘disgust’’ compared to WC observers. Also, WC
observers distributed their fixations evenly across the face,
whereas EA observers systematically biased theirs toward
the eye region. A model observer revealed that EA observers
sample information that is highly similar between certain
expressions (i.e., ‘‘fear’’ and ‘‘surprise’’; ‘‘disgust’’ and
‘‘anger’’). Despite the apparent lack of diagnostic information
(see [14]), EA observers persisted in repetitively sampling the
eye regions of ‘‘fear,’’ ‘‘disgust,’’ and ‘‘anger.’’

Do EA observers make categorization errors simply because
they select ambiguous information? Behavioral results showed
that in response to ambiguity, EA observers tended to bias their
categorization responses toward less socially threatening
emotions (e.g., ‘‘surprise’’). Instead, facial expression categori-
zation is likely to be conjunctively influenced by predetermined
social motivations and cultural concepts (see [15–17]) as well
as information sampling biases. However, our eye movement
data refute ‘‘decoding rules’’ hypotheses of substituting an
initial correct categorization with a more socially acceptable
emotion [10, 11, 18] or attenuated intensity [9, 11].

Cultural differences in fixation patterns may reflect cultural
specificity in the transmission of facial expression signals.
EA observers systematically neglect critical aspects of
FACS-codes faces (e.g., action units 20, 26, and 27 [14]),
demonstrating that FACS-coded facial expression signals do
not accurately represent the diagnostic features of EA facial
expressions. Rather, EA fixation patterns predict the eye
region as primarily diagnostic for facial expression categoriza-
tion with minimal involvement of the mouth (see also [19]), as
reflected by the EA emoticons (O.O) for surprise and (^.^) for
happy [20].

Finally, our data question gaze avoidance in face processing
for EA observers (see [21]). Instead, their fixation patterns
probably reflect strategies developed to achieve diagnostic
recognition [15], with modulations in fixation patterns across
categorization tasks indicative of specific information selec-
tion (e.g., for identification [21]; see also [22–27]).
In sum, our data demonstrate genuine perceptual differences
between WC and EA observers and show that FACS-coded
facial expressions are not universal signals of human emotion.
From here on, examining how the different facets of cultural
ideologies and concepts (see [28] for an overview and also
[16, 17]) have diversified these basic social skills will elevate
knowledge of human emotion processing from a reductionist
to a more authentic representation. Otherwise, when it comes
to communicating emotions across cultures, Easterners and
Westerners will continue to find themselves lost in translation.

Experimental Procedures

Observers

Thirteen Western Caucasian (13 European, 7 female and 6 male, mean age

24 years 5 months) and 13 East Asian (12 Chinese and 1 Japanese, 8 female

and 5 male, mean age 23 years 2 months) observers participated. All EA

observers were East Asia nationals, with an average UK residence of one

week and a minimum International English Language Testing System score

of 6.0 at the time of testing. All participants had minimal prior experience of

other-race (OR) faces (assessed by questionnaire; see Supplemental Exper-

imental Procedures), had normal or corrected vision, gave written informed

consent, and were paid £6 per hour for participating. The University of Glas-

gow Department of Psychology ethical committee approved the experi-

mental protocol.

Materials

Stimuli [7] consisted of 56 images displaying six FACS-coded facial expres-

sions (‘‘happy,’’ ‘‘surprise,’’ ‘‘fear,’’ ‘‘disgust,’’ ‘‘anger,’’ and ‘‘sadness’’) plus

‘‘neutral.’’ Gender and race of face were equally distributed for each expres-

sion. Same-race (SR) faces for Chinese observers were Japanese faces [29,

30]. We cropped the images with Adobe Photoshop CS and aligned the eye

and mouth positions with Psychomorph software [31]. Images (280 3 380

pixels) were viewed on a 1024 3 768 pixel white background on a 21-inch

Iiyama HM204DTA monitor (120 Hz refresh rate) at a distance of 60 cm (a

natural distance for social interaction [32], representing faces as the

average size of a real face [33]) and subtended 10� 3 14� of visual angle.

Stimulus presentation was controlled by SR Research Experiment Builder

software, version 1.4202. Eye movements were recorded at a sampling

rate of 500 Hz (pupil-only mode) with an EyeLink II head-mounted eye

tracker (SR Research), which has an average gaze position error of <0.5�,

a resolution of 1 arc minute, and a linear output over the monitor’s range.

Procedure

Participants performed a 7AFC facial expression categorization task with

SR and OR faces. Prior to testing, we established participants’ familiarity

with the categorical labels, determined ocular dominance via the Miles
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test [34], and performed a nine-point fixation procedure (implemented in the

EyeLink application programming interface) to establish optimal calibration

(drift correction < 1� of visual angle).We tracked only the dominant eye,

although viewing was binocular. A chin rest minimized head movements

and maintained viewing distance. Images were presented pseudorandomly

in one of four quadrants of the screen and remained until the participant

responded. Manual responses were accompanied by a verbal response

(to eliminate eye movements toward response keys), recorded by the exper-

imenter.

Fixation Maps

In Figure 1, Figure 4, Figure S2, and Figure S6, fixation maps were computed

for each condition by plotting all fixation (x, y) coordinates across time into

a 380 3 280 matrix. To represent the foveated region (2� visual angle), we

smoothed each fixation with a Gaussian kernel (a = 10 pixels). Fixation

maps in Figure 1 and Figure S2 are based on correct trials, whereas those

in Figure 4 and Figure S6 are based on error trials.

Face Regions

We established face regions to provide a common frame of reference to

describe the location of fixations and conduct MDL analysis. First, we

applied the pixel test (p < 0.05; [35]) to fixation maps in each condition to

reveal the significantly fixated regions, calculating a centroid for each signif-

icant region. We pooled all centroids across conditions and performed

a k-means clustering [36] to calculate a single centroid for each nonoverlap-

ping significantly fixated region. Five centroids corresponded to ‘‘left eye,’’

‘‘right eye,’’ ‘‘bridge of nose,’’ ‘‘center of face,’’ and ‘‘mouth.’’

Minimum Description Length

MDL is a statistical method that extracts regular patterns from data set

sequences [12, 13]. Here, a pattern consisted of the succession of fixations

on face regions (e.g., ‘‘left eye’’ / ‘‘right eye’’ / ‘‘left eye’’). We calculated

fixation patterns by categorizing fixations by face region based on their

minimum distance to a face region centroid. We collapsed fixations occur-

ring consecutively within the same face region into a single fixation. We con-

ducted MDL on each condition separately (correct and incorrect trials

included) from zero (single fixation sequences) to third order (four fixation

sequences) inclusive. To eliminate fixation sequences occurring by chance,

we used the Monte Carlo simulation method to pseudorandomly sample the

face regions (biased to replicate the distribution of observer fixations across

face regions). We conducted 10,000 simulations per condition, computing

a frequency distribution for each fixation pattern. We then calculated the

probability of each fixation pattern appearing in the observer data set,

including those occurring significantly frequently (a = 0.05) in the results.

Model Observer

We used a model observer to build estimated patterns of confusions based

on samples of face information. Each sample of information was obtained

via a method that approximates the information extracted by the visual

system during a fixation. First, we decomposed each image (averaged

across all identities) into a four-level Laplacian pyramid [37]. We then filtered

each level by applying a Gaussian window (a = 10 pixels) to the same relative

image location before recombining the levels to produce the desired image

(see Figure S5A). To estimate patterns of confusions (i.e., similarity) based

on the sampled information, the model observer Pearson correlated the

stimulus expression (e.g., ‘‘fear’’ in Figure S5A) with each of the other

expressive faces (e.g., ‘‘surprise,’’ ‘‘anger,’’ ‘‘disgust,’’ ‘‘sadness,’’ and

‘‘neutral’’ in Figure S5A). The correlation values (plotted in dashed color-

coded lines in Figure S5B) representing the model observer confusions

were fitted (using ordinary least squares) against the behavioral confusions

of the EA observers (plotted in black in Figure S5B; see Figure S1 for confu-

sion matrices). We repeated the sampling process for 10,000 individual

samples randomly located across the face. Finally, we sorted each informa-

tion sample according to its fit to the behavioral confusions of the EA

observers (see contour plots of Figure S6 for rank order of ‘‘best’’ to ‘‘worst’’

fits). We followed the same procedure for each expression (except ‘‘happy,’’

as it was seldom confused with any other expression).

Supplemental Data

Supplemental Data include Supplemental Experimental Procedures, one

table, and six figures and can be found with this article online at http://

www.cell.com/current-biology/supplemental/S0960-9822(09)01477-8.
Acknowledgments

P.G.S. and R.C. were supported by the Economic and Social Research

Council and Medical Research Council (ESRC/MRC-060-25-0010). R.E.J.

was supported by ESRC PhD studentship PTA-031-2006-00192, and C.B.

was supported by a PhD studentship provided by Fonds Québécois de la
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